Spatiotemporal Organization of Catalysts Driven by Enhanced Diffusion
Corey Weistuch, and Steve Presse

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.
Spatiotemporal Organization of Catalysts Driven By Enhanced Diffusion

C. Weistuch1,2 and S. Pressé1∗†

1Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook NY 11794 USA
2Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook NY 11794 USA
3Department of Physics, IUPUI Indianapolis IN 46202 USA
∗Corresponding author. Current address: Department of Physics and School of Molecular Sciences, Arizona State University, Tempe AZ 85287 USA
†Corresponding email: spresse@asu.edu

ABSTRACT: Recently both microfluidic and fluorescence correlation spectroscopy experiments have revealed that diffusion coefficients of active biological catalysts (enzymes) rise proportionately to their catalytic rate. Similar effects have also been observed for active material catalysts, such as platinum nanocatalysts in hydrogen peroxide solution. While differences in diffusion coefficients have recently been cleverly exploited to spatially separate active from inactive catalysts, here we investigate the consequences of these novel findings on the spatiotemporal organization of catalysts. In particular, we show that chemical reactions – such as coupled catalytic reactions – may drive effective attraction or repulsion between catalysts which in turn drives their spatiotemporal organization. This, we argue, may have implications for internal cell signaling.

I. INTRODUCTION

It is well established that active catalysts1, such as metal catalysts half coated in platinum2, diffuse faster in the presence of their substrate. Experiments suggest that the velocities of these catalysts grow proportionately with the amount of available substrate2. Similar phenomena have also been observed for other active small molecule catalysts3 as well as active biological catalysts (enzymes) in the presence of their substrate4–7.

For instance, fluorescence correlation spectroscopy experiments5,7 in addition to microfluidics experiments6, have revealed that enzymes effectively diffuse faster in the presence of their substrate with a diffusion coefficient, D, directly proportional to their reaction rate7. On the basis of these observations, microfluidic experiments have demonstrated that mixtures of active and inactive enzymes may be separated in physical space on the basis of catalytic activity8.

From the simple observation that active catalysts, such as enzymes, exhibit enhanced diffusion in proportion to their catalytic rate, we construct corresponding diffusion equations describing how the evolution of an active catalyst’s concentration – $E(x, t)$ – couples to the concentration of its substrate. From this we show that, under reasonable assumptions, coupled catalytic reactions – which are common for enzymatic processes – may give rise to effective attraction or repulsion between active catalysts. We show this using reaction-diffusion equations, which are used to model reactions in physical space that are especially relevant to single molecule catalysis9, as well as other systems where reactive species are not homogeneously distributed10–12 such as living11,13–15 and some material11,16 systems.

We will then briefly discuss emergent spatiotemporal ordering – of recent interest in living cells14,17 – induced by reaction-enhanced diffusion and its potential implication on the organization of diffusing enzymes inside cells.

II. THEORY

We start from two basic experimental observations from which we construct our theory:

1) The rate of a catalytic reaction, V, depends on the amount of available substrate. That is, we assume that the rate of a catalytic reaction (the rate of product formation) is given by the following Michaelis-Menten expression

$$V = \frac{k_{cat}S^n}{K_m + S^n}. \quad (1)$$

This relation describes the phenomenon of saturation of catalysts. Here S is the substrate concentration (for which we set the units to mM), k_{cat} is the maximal turnover rate (ns^{-1}), and K_m is the Michaelis-Menten constant (mM). While Eq. (1) – with Hill coefficient, n, of unity – has been observed for enzymes that undergo enhanced
From these observations, we now say that when acting on a single substrate, an active catalyst’s concentration profile satisfies the following diffusion equation

\[\frac{\Delta D}{D_0} \propto V \rightarrow D_e = D_0 + \alpha V. \]

(2)

where \(\Delta D > 0 \) and \(\alpha \) is an experimentally determined proportionality constant. For active catalysts, such as enzymes exhibiting enhanced diffusion, this constant is of order 0.001 \(\mu m^2/s \). Furthermore, for biologically relevant examples of active enzymes such as catalase and alkaline phosphatase, respectively, we use the following parameter values \((K_m = 62 mM, k_{cat} = 5.8 \times 10^{-7} ns^{-1}, \alpha \sim 0.001 \mu m^2/s) \) and \((K_m = 1.6 mM, k_{cat} = 1.4 \times 10^{-7} ns^{-1}, \alpha \sim 0.001 \mu m^2/s) \).

From these observations, we now say that when acting on a single substrate, an active catalyst’s concentration profile satisfies the following diffusion equation

\[\frac{\partial E(\vec{x}, t)}{\partial t} = \nabla^2 \left[D_e S(\vec{x}, t) E(\vec{x}, t) \right] = \nabla^2 \left[(D_0 + \alpha V) E(\vec{x}, t) \right] \]

(3)

where \(E(\vec{x}, t) \) is the concentration, in time and space, of the active catalyst which depletes its substrate \(S(\vec{x}, t) \). This equation assumes that all catalysts are freely diffusing which is a reasonable assumption for small material catalysts. For large enough substrate, the catalyst-substrate complex may diffuse slower. However, for many cases, including those that we have discussed, the substrate is a small molecule and this effect may be ignored. Furthermore, \(S(\vec{x}, t) \), in general, satisfies its own reaction-diffusion equation.

\[\frac{\partial S}{\partial t} = D_s \nabla^2 S + E_1 V_1(S) - E_2 V_2(S) - \lambda S \]

(4)

where the substrate, \(S \), is produced by a catalyst 1 (with concentration \(E_1(\vec{x}, t) \)) reacting with initial substrate with concentration \(S_i \) (whose product is \(S \)) with rate \(V_1(S) \) per catalyst. The substrate whose concentration is \(S \) may then be broken down through spontaneous degradation, with first order rate constant \(\lambda \), as well as by reacting with a catalyst 2 (with concentration \(E_2(\vec{x}, t) \)) with rate \(V_2(S) \) per catalyst. For sake of clarity, and before performing any calculation, we first qualitatively observe from the form of Eq. (3) that \(\nabla S \) imparts a force on an active catalyst. To see this explicitly, we write Eq. (3) as

\[\frac{\partial E}{\partial t} = (D_0 + \alpha V) \nabla^2 E + \alpha \left[\nabla \cdot \left(E \frac{\partial V}{\partial S} \nabla S \right) + \frac{\partial V}{\partial S} \nabla S \cdot \nabla E \right] \]

(5)

and note that the first term of Eq. (5) is simply diffusive. We then compare Eq. (5) to a Fokker-Planck equation

\[\frac{\partial E}{\partial t} = D_e \nabla^2 E - \nabla \cdot \left(\frac{\mathbf{F}}{\zeta} \right) - \mathbf{v} \cdot \nabla E \]

(6)

We can then associate \(\alpha \partial_2 V(S) \nabla S \) in the second term to \(-\mathbf{F}/\zeta \) where \(\mathbf{F} \) is a force and \(\zeta \) is a friction coefficient. Likewise, we can associate \(-\alpha \partial_2 V(S) \nabla S \) in the last term to a drift velocity, \(\mathbf{v} \). Since both \(\alpha \) and \(\partial_2 V(S) \) are strictly positive \((V(S) \text{ is a strictly increasing function of } S)\), the drift velocity, or equivalently, driving force is oriented and adopts the sign of \(\nabla S \).

Furthermore, in a uniform substrate where \(\nabla S = 0 \), enhanced diffusion still arises through the first term of Eq. (5). However, this uniform substrate profile does not impart a net force on the active catalysts (since \(\mathbf{F} \) and \(\mathbf{v} \) are zero). Rather, by numerically solving coupled equations describing the evolution of the substrate and catalyst concentration, it is possible to recover times — dependent on the geometry of the volume containing the substrate and catalysts as well as initial conditions — over which \(\nabla S \) may be non-zero. Furthermore, for non-zero \(\nabla S \), if the product of one catalyst becomes the substrate for another, we will see that the catalysts can effectively interact with the interaction mediated by substrate availability. The latter scenario may have implications to spatiotemporal organization inside living systems, where non-uniform steady state substrate gradients may naturally arise because proteins responsible for the generation or degradation of substrate (used by another enzyme) may themselves be spatially localized. For instance, some critical biological examples of nonuniform substrate profiles that are sustained by the spatial localization of enzymes include the regulation of cytoplasmic mRNA and protein concentrations by small GTPases (such as Ran which shuttles RNA and several proteins out of the nucleus \cite{30}) and the regulation of hydrogen peroxide (substrate) signaling by enzymes such as catalase \cite{10,20}.

For the remainder of this paper, we will simplify our equations by introducing the following dimensionless...
sionless variables
\begin{align}
\tilde{r}^2 &= \frac{r^2}{B} \\
\tilde{t} &= \frac{tD_0}{B} \\
\tilde{C} &= Cr^3 \\
L &= \frac{\alpha k_{\text{cat}}}{D_0}
\end{align}
(7) (8) (9) (10)
where \(\tilde{r} \), \(\tilde{t} \), and \(\tilde{C} \) represent dimensionless distance, time, and concentration respectively, and where \(L \) is understood as the maximal fractional change in the diffusion constant of a catalyst at saturation. As \(L \) increases, the effect of enhanced diffusion increases. As examples for biological catalysts, \(L \approx 1 \) for catalase and \(L \approx 2.1 \) for alkaline phosphatase. Furthermore, we used \(B = 1 \mu m^2 \) since, for biological applications, this value represents a reasonable fraction of the area of a eukaryotic cell, say, where substrate concentrations may vary.

In dimensionless variables, the equations for the evolution of the second catalyst as well as the substrates \(S_i \) and \(S \) are
\begin{align}
\frac{\partial \tilde{E}_2}{\partial \tilde{t}} &= \tilde{\nabla}^2 \tilde{E}_2 + L_2 \tilde{\nabla}^2 \left(\frac{\tilde{E}_2 \tilde{S}_n}{K_{m2} + \tilde{S}_n} \right), \\
\frac{\partial \tilde{S}_i}{\partial \tilde{t}} &= \frac{D_{s_i}}{D_0} \tilde{\nabla}^2 \tilde{S}_i - \frac{B}{D_0} \frac{k_{\text{cat}1} \tilde{E}_1 \tilde{S}_i}{K_{m1} + \tilde{S}_i} + G(\tilde{S}_i),
\end{align}
(11) (12)
and
\begin{align}
\frac{\partial \tilde{S}}{\partial \tilde{t}} &= \frac{D_s}{D_0} \tilde{\nabla}^2 \tilde{S} \\
+ &\frac{B k_{\text{cat1}} \tilde{E}_1 \tilde{S}_i^{m1}}{D_0 K_{m1} + \tilde{S}_i^{m1}} - \frac{B k_{\text{cat2}} \tilde{E}_2 \tilde{S}_i^{m2}}{D_0 K_{m2} + \tilde{S}_i^{m2}} - \frac{AB}{D_0} \tilde{S}.
\end{align}
(13)

For generality, here we assumed the form of a Hill equation for the enzymatic rates with different Hill coefficients \(m \) and \(n \) as well as dissociation constants \(K_{m1} \) and \(K_{m2} \) for each reaction. We also assume that \(S_i \) production rate is controlled \(G(\tilde{S}_i) \) which, in full generality, may depend on other reactions. In order to demonstrate that substrates can mediate catalyst attraction and repulsion, as we show shortly, we can assume for simplicity that \(S_i \) is uniform and at steady state. Furthermore, except when noted otherwise, \(S \) is assumed to be at steady state. Thus, we will be focusing on the effect of \(S \) on \(E_2 \) alone without regard for \(E_1 \) which we assume is giving rise to the concentration profile of \(S \). Under these circumstances we will simply refer to the single catalyst species as \(E \) and the single substrate species, \(S \).

III. RESULTS AND DISCUSSION

The first important result is that enhanced diffusion does not only affect the transient dynamics of coupled catalysts, but also affects their steady state concentration profiles as well.

To see this, we start from the steady state of Eq. (11) and consider a steady state substrate profile, \(\tilde{S} \) in Eq. (11), to be given by either expression below
\begin{align}
\tilde{S}_a &= A \exp \left(-\tilde{r}^2 \right) \\
\tilde{S}_b &= S_0 - A \exp \left(-\tilde{r}^2 \right).
\end{align}
(14) (15)

For instance, Eq. (14) may describe the steady state of a reaction-diffusion equation with substrate primarily generated in one spatial location, followed by free diffusion of the substrate and followed by subsequent degradation or removal of the substrate over time. Eq. (15) describes a similar process with uniform generation of substrate followed by a localized depletion of substrate in one region.

In subsequent calculations, we have used \(A = K_m/2 \) where the active catalyst is neither over-saturated and \(\tilde{r} \leq 4 \) unless otherwise noted. This corresponds to an \(r \) of the order of \(\mu m \). For simplicity, we also assume a Hill coefficient of 1 unless otherwise noted. For a substrate such as catalase’s hydrogen peroxide for instance – we would have \(A = 31 \mu M \) while for alkaline phosphatase’s substrate, \(A = 0.8 \mu M \). We also chose \(S_0 = A \) as the undepleted substrate concentration in \(\tilde{S}_b \).

As we now show, enhanced diffusion by catalysts affects their distribution, not only as they evolve in time, but at steady state as well. For instance, using spherical boundary conditions with \(\partial E = 0 \) at some fixed \(R \) – coinciding, for example, with the boundary of a cell in the case of a biological catalyst – we obtain the steady state distribution of catalyst from Eq. (11)
\begin{align}
G &= \left[1 + E \frac{\tilde{S}_n}{K_m + \tilde{S}_n} \right] \tilde{E}
\end{align}
(16)
where \(G \) is a constant that can be computed by conservation of mass.

The steady state catalyst profiles, given by
Eq. (16), and their evolution in time (starting from a delta function) are explored in Figs. (1) and (2). In particular, a substrate concentration given by Eq. (14), shown in blue in Fig. (1a), gives rise to the depletion of active catalyst, whose profile is shown in green, in the neighborhood of concentrated substrate at steady state. Thus the substrate imparts an effective force repelling the catalyst away from regions rich in substrate due to the sign of ∇S in those regions. For sake of comparison, the inactive catalyst profile is shown as a red dotted line. Fig. (1b) shows how, in the presence of open boundary conditions, the enhanced catalyst profile (green line) evolves in time by illustrating the profile at a time slice $t = 10$ (coinciding with a t of ~ 100 ms$^{-2}$) and contrasting this profile to that of the inactive catalyst profile (red line). The bimodal shape of the enhanced catalyst is reminiscent of the volcano effect seen in bacteria attempting to locate point sources of chemoattractant because the velocities of bacteria are greatest at point sources where their run over tumble probability is highest. Assuming the substrate can be rapidly replenished to maintain steady state, the effect of enhanced diffusion may give rise to as much as a 50% change in concentration of catalyst over the epicenter of the concentration gradient (using parameters appropriate for alkaline phosphatase7).

By contrast, the profile \tilde{S}_b given by Eq. (15) describes a localized depletion region which occurs if another catalyst, which depletes the substrate, is localized to one region. In this case, the opposite scenario as that predicted for profile \tilde{S}_a arises. That is, active catalysts diffuse more slowly and are thus locally trapped in the depleted region as seen in Fig. (2). In other words, we see an effective attraction of active catalysts (those that generate the substrate and those that degrade the substrate) to the region depleted of substrate where the catalyst that degrades the substrate moves more slowly. Fig. (2b) shows the progression of the active catalyst profile evaluated at the same time slice as the previous figure and contrasted with the profile of the active catalyst without the depletion (red).

In order to explore the possibility of spatial organization due to enhanced diffusion, we explore Eq. (11) and Eq. (13) in their full generality. In particular, we suppose that the steady state catalyst profile in Fig. (1a) (in green) was maintained and this catalyst (catalyst 1 with dimensionless concentration E_1) also interacted with a second substrate \tilde{S}_i to produce a new substrate \tilde{S}. This substrate could then fuel a second catalyst (catalyst 2 with dimensionless concentration E_2) which may also enhance diffuse. We would then expect \tilde{S} to be in high concentrations where catalyst 1 is present, resulting in the subsequent repulsion of catalyst 2. From this interaction, we now expect that E_1 should effectively repel E_2 due to their mutual interaction mediated through \tilde{S}. This is indeed recovered, as seen in Fig. (3), which shows catalyst 1 in green and catalyst 2 in magenta where we have selected $k_{cat2} = 1.0 \times 10^{-7}$ ns$^{-1}$, $K_m2 = 6.0 \mu M$, $\lambda = 1.0 \times 10^{-4}$ ns$^{-1}$ M$^{-1}$, and $D_a = 10 D_0$. We also chose the constant rate of production of \tilde{S} per catalyst, $V_i(S_i) = 1.4 \times 10^{-3}$ ns$^{-1}$ M$^{-1}$. Furthermore, we assumed that the total amount of both catalysts was the same, expressed in μM concentrations, as well as, chose the Hill coefficients to be 1 and 4 for the first and second catalysts, respectively. Catalyst 1 was assumed to have the same k_{cat} and K_m as alkaline phosphatase for sake of concreteness.

IV. CONCLUSION

We have drawn general predictions on effective attraction and repulsion of catalysis mediated by their substrate from a model directly inspired from experimental observations5. Our analysis predicts that enzymes within the same catalytic path-
FIG. 2. Active catalysts are effectively trapped in substrate depleted regions. Left: Comparison of the steady state catalyst profile when enhanced diffusion occurs (green) with the expected profile, still of active catalyst, without substrate depletion (red) and in comparison to its depleted substrate profile, S_b (blue). The substrate is again rescaled to fit the plot and has a real maximum of 0.8mM, the uniform substrate concentration if the depletion was absent. The significant buildup of catalyst near the origin is now easily seen, in direct contrast to the results of Fig. (1). Where the substrate concentration is lowest, the catalyst (green) experiences no enhancement. Right: At $t = 10$, the deviation of the enhanced diffusing catalyst in a depleted region (green) from its expected profile without the depletion (red) using the same substrate profile, S_b. Details of boundary conditions are explained in the main body.

FIG. 3. Spatial organization of catalysts due to enhanced diffusion. Catalyst 1 (green) produces a substrate (not shown) for catalyst 2 (magenta). The regions of high substrate concentration are the regions of high catalyst 1. Due to the enhanced diffusion, catalyst 2 is repelled away from high concentrations of catalyst 1.

way or alternatively, coupled catalysts may generate forces that dramatically impact transient dynamics and ultimately influence their spatial steady state distributions.

We ignored, on physical grounds relevant to enhanced diffusion of active enzymes in experiments7, the possibility that the catalytic activity of enzymes could heat the buffer (in which catalysts and substrate are placed) as a whole and that this heating could be responsible for the enhanced diffusion of active enzymes in experiments7. Indeed, if this were the case as has been incorrectly predicted in Ref.27, physical separation of active from inactive catalysts would not be possible8. Furthermore, experiments directly suggest that temperature rises of the buffer are minimal, $\sim 0.2K$ 28, for typical enzyme and substrate concentrations used in experiments. This, in turn, is also consistent with the results of control experiments showing that inactive enzymes, immersed in a bath of active enzymes, are unaffected by the ongoing catalytic activity7.

The predictions we make on the spatiotemporal organization of catalyst profiles may be tested by future experiments in microfluidic devices as already done for single enzyme diffusion7 and may have potential implications on the distribution of enzymes sharing substrates and products as well as implications for material systems. For example, enhanced diffusion distances catalyst species from the source of their substrates perhaps providing a means to save substrate from immediate degradation Fig. (3). Furthermore, if the two catalysts produce substrate for each other – as in the well-known Goldbeter-Kohlend loop24 which describes phosphorylation and dephosphorylation loops in cells – then complex spatial modulation of substrate and catalyst distributions due to enhanced diffusion may arise. Alternatively, if two catalysts share a substrate, and at least one of them undergoes enhanced diffusion, then the two catalysts will be found in closer proximity perhaps again suggesting transient, and even stationary, spatial organization of catalytic pathways. This may also play a role in recent work on enzymatic cross-talk through competition and resource sharing25,26.

Extending this logic further, it is now possible to imagine that the activity of a catalyst could be inferred from the dynamics of another species of catalyst and could help deduce the role of spatiotemporal ordering of biological catalysts11,15. As a concrete example, evidence of a "volcano-like" effect of Fig. (1) may suggest the location of a substrate-producing protein.

Recent results show that enhanced diffusion is a trait shared by several biologically crucial enzymes. In particular, malate dehydrogenase and citrate synthase, two of the enzymes in the Krebs cycle (responsible for the production of many critical high energy biomolecules), were shown to diffuse faster in the presence of their substrates27. It is then conceivable that this enhanced diffusion may play a role in the regulation of functional com-
plexes between these two enzymes. Whether this effect is important in the crowded cellular environment and whether cells take advantage of enhanced diffusion or try to prevent it still remains to be seen.

While many of the parameters used in our simulations were inspired by work on active enzymes, our simulations are relevant to active Brownian catalysts (Figure 2 in Ref. 29) such as self-propelled Janus catalysts. More generally, our work suggests new controls to spatially and temporally manipulate catalytic processes.

V. ACKNOWLEDGEMENTS

SP would like to acknowledge support from the US Army grant “ARO 66548-EG for Complex Dynamics and Systems”. CW thanks the NSF for a summer REU opportunity. We would also like to thank Dr. Konstantinos Tsekouras for interesting discussions and proof-reading this manuscript.

VI. REFERENCES

Higher Substrate Leads to More Diffusion

Higher Diffusion Leads to Repulsion from Substrate

\[
\frac{\partial E(\vec{x}, t)}{\partial t} = \nabla^2 [D_e(S(\vec{x}, t))E(\vec{x}, t)]
\]